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ABSTRACT
In overlay and peer-to-peer applications it can be very useful
to have accurate estimates of the maximum rate at which
traffic can be sent along a network path without inducing
significant congestion. The available bandwidth of the path
provides an approximate measure of this rate. Existing ap-
proaches for generating an accurate estimate of available
bandwidth require saturating the path for a short period of
time with high-rate packet trains. When estimates are re-
quired for multiple paths, this strategy scales very poorly
and induces an unacceptable measurement overhead. In
this paper, we describe a distributed algorithm, based on
Bayesian active learning and loopy belief propagation, for
efficiently estimating the available bandwidths of multiple
paths. We develop a probabilistic graphical model to cap-
ture the statistical dependencies between the available band-
widths of different paths; this allows us to learn about multi-
ple paths each time we measure along a single path. Simula-
tions and PlanetLab experiments indicate that this process
requires few probes to generate accurate estimates.

1. INTRODUCTION
Many peer-to-peer and overlay applications could benefit

from knowing the rate at which they could send an arbi-
trary amount of data along a path such that there is high
probability that the output rate is (almost) the same as the
ingress rate (or equivalently, such that the injected traffic
induces minimal congestion). Peer selection in peer-to-peer
streaming applications frequently involves some form of esti-
mation of such a rate. Video streaming applications can use
the information to choose transmission rates; the rate can
also influence client-server association in content provider
networks [6]. The available bandwidth of a path, which
measures the unused capacity of the path over a specified
time period, provides an approximate indicator of this rate
(see [7] for a thorough discussion of the relationship).

The goal of this paper is to estimate the available band-
widths of multiple paths in a network. Our methodology
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exploits the correlations that arise when paths share links.
Under certain modelling assumptions (see Section 2), the
available bandwidth of a path is determined by a single tight
link; each such tight link can decide the available bandwidths
of multiple paths that traverse it. Measurements on one path
thus can provide information not only about the available
bandwidth of that path, but also the available bandwidths
of other paths. We conduct measurement using packet-train
probes and develop a probabilistic graphical model (factor
graph [3]) to capture the dependencies between path (and
link) available bandwidths. We adopt a sequential Bayesian
learning methodology to infer marginal posteriors of the
available bandwidths. With this approach, measurement
noise can be treated in a more principled manner and active
learning methods [1] can be employed to choose the paths
to probe and the rates at which to measure, in order to
minimize measurement overhead. The disadvantage is that
we need to introduce measurement models (and priors), and
there is the danger of modelling error. To mitigate this, we
employ an empirical Bayes strategy, learning the parameters
of a likelihood model from the measurements.

Related Work: In a short paper, it is impossible for us
to do justice to the substantial literature on available band-
width and its estimation. We refer the reader to [4] and [7]
for much more complete discussions and surveys. The most
effective techniques for available bandwidth estimation, in-
cluding Pathload [5] and pathChirp [8], employ packet trains
as the measurement methodology and are based on the prin-
ciple of self-induced congestion. This principle implies that
if a packet-train is sent at a rate exceeding the path’s avail-
able bandwidth, then queuing will occur, and as a result,
the egress rate is likely to be less than the ingress rate, and
the inter-packet spacing is likely to increase over time. Con-
versely, if the rate of the input train is less than the avail-
able bandwidth, the egress rate will approximately equal
the ingress rate and the inter-packet spacing will have no
trend. The estimation approach is then to determine the
rate at which the transition between these two behaviours
occurs. The relationship between available bandwidth and
this transition point is not exact; Liu et al. provide an ex-
cellent discussion on this point in [7].

Contributions: Existing bandwidth estimation techniques
are designed for measurement of a single path. The method-
ology we present addresses estimation on multiple paths and
is the first to employ probabilistic inference, graphical mod-
els, and active learning. In the broader context of network
performance monitoring, Coates and Nowak introduced the
use of graphical models for network tomography in [2], and



Rish et al. employed graphical models and active probing
in [9], primarily for fault detection.

The rest of this paper is organized as follows. In Sect. 2,
we formally define the available bandwidth metric. We de-
scribe our estimation methodology in Sect. 3. In Sect. 4,
we present results obtained from simulations and online ex-
periments on the PlanetLab network. In Sect. 5, we discuss
other approaches we are exploring to solve this estimation
task. Sect. 6 summarizes the contribution of the paper.

2. PROBLEM FORMULATION
Our goal is to estimate the available bandwidths of all

paths in a network. The network is represented by a set
of N directed links and a set of M paths. We assume that
the routing topology of this network is known, and that
it remains fixed for the duration of our experiments. Let
rl denote the ingress rate of a sequence of packets at link
l, and let r′l denote the egress rate. Also, let rp denote
the ingress rate and r′p the egress rate of the end-to-end
path p. We are interested in identifying the largest ingress
rate at which we can transmit traffic along a path while
maintaining an egress rate which is almost as large as the
ingress rate with specified probability. More formally, for
given ε > 0 and δ > 0, we seek the largest rp such that
Pr(r′p > rp − ε) > 1 − δ. This probability is defined on the
field of events consisting of all sequences of packets injected
at rate rp over some period within the measurement interval.
We call this maximal rate r∗p the (ε, δ)-available bandwidth
for path p. We stress that this is different from the standard
definition of available bandwidth, which is framed in terms
of utilization and capacity, but it does more directly reflect
our quantity of interest1. We want to know the rate at which
we can inject traffic so that with some specified probability
the egress rate will almost equal the ingress rate.

We wish to establish a relationship between the (ε, δ)-
available bandwidth for a path and the (ε, δ)-available band-
widths of its constituent links. Consider an individual link.
Given an ingress rate rl, suppose there exists a small con-
stant εl > 0 and a small constant 0 < δl < 1 such that
Pr(r′l ≤ rl − εl) ≤ δl; that is, the probability that the
egress rate deviates significantly from the ingress rate is
bounded by δl. We can determine a similar relationship for
an end-to-end path with link set Lp via the union bound,
Pr(∪l∈Lp{r′l ≤ rl − εl}) ≤

P
l∈Lp

δl. From this relationship,

it follows that

Pr(∩l∈Lp{r
′
l > rl− εl}) = Pr(r′p > rp−

X
l∈Lp

εl) > 1−
X
l∈Lp

δl.

The (ε, δ)-available bandwidth for path p is then the maxi-
mum rp subject to Pr(r′p > rp −

P
l∈Lp

εl) > 1 −
P

l∈Lp
δl,

where
P

l∈Lp
εl < ε and

P
l∈Lp

δl < δ. We denote the largest

such ingress rate by r∗p(ε, δ). Similarly, at the link level, for

1Most existing available bandwidth estimation techniques effec-
tively identify the quantity we have defined (for ε = 0 and δ = 0).
Fluid models of traffic have been employed to argue for the equiv-
alence of this rate-based quantity and the utilization-based avail-
able bandwidth metric [5]. Liu et al. provide a thorough analysis
and some experimental results that demonstrate that the equiva-
lence is only approximate [7]. We choose not to introduce a new
name for this probabilistic, rate-based quantity because there is
an approximate equivalence and because it has been the focus of
most “available bandwidth” estimation techniques.

given εl and δl, let r∗l (εl, δl) denote the largest rl such that
Pr(r′l > rl − εl) > 1− δl.

Our inference procedure builds on the assumption that
on each path there is a tight link l∗ ∈ Lp which essentially
determines the (ε, δ)-available bandwidth on the entire path.
That is, supposing that r∗p is the (ε, δ)-available bandwidth
on path p, we assume there is a link l∗ such that εl∗ = ε� εl
and δl∗ = δ � δl for all l ∈ Lp, l 6= l∗ at input rate r∗p.
Consequently,

P
l∈Lp

εl ≈ εl∗ = ε and
P

l∈Lp
δl ≈ δl∗ = δ,

and thus r∗p(ε, δ) ≈ r∗l∗(ε, δ). From this perspective, we can
see that r∗p(ε, δ) ≈ minl∈Lp r

∗
l (ε, δ). Another way to view

our assumption is that the input rate r∗p is well below the
available bandwidth on each of the non-tight links l 6= l∗, so
it is possible to select εl ≈ 0 and δl ≈ 0 while still ensuring
Pr(r′l > rl − εl) > 1− δl for rl ≈ r∗p.

3. METHODOLOGY
Our approach to (ε, δ)-available bandwidth estimation is

based on packet train measurements. Each packet train
probes one path at a specified rate. When we probe path
p at a rate r, the outcome of the measurement is a binary
variable z = 1{r′ > r − ε}, indicating whether the output
rate r′ was within ε of the input rate.

We employ a probabilistic graphical model (factor graph
[3]) to capture statistical dependencies. The factor graph
contains one variable node, yp, for each path and one vari-
able node, xl, for each logical link2 in the network. Both
link and path variables are modelled as discrete random
variables with, e.g., Pr(yp = r) being the probability that
the (ε, δ)-available bandwidth on path p is r. The variable
nodes are connected to function nodes expressing the rela-
tionship yp = minl∈Lp xl; thus, there is one factor node for
each path variable. When a new measurement, z, is ob-
tained, we update the factor graph by running belief propa-
gation [11]. We adopt the likelihood model L(z = 1|yp, r) =
logsig(−α(r−yp)) for the measurements3, where α is a small
positive constant. We have chosen this model based on ex-
perimental data; for each network, the parameter α is es-
timated via standard regression techniques by performing
multiple measurements on the constituent paths at various
rates r. In our experience, the likelihood model is relatively
stable so the training exercise need only be executed rarely.
On the other hand, every time the available bandwidth es-
timation algorithm is executed, new data are collected and
the α value can be easily updated.

Instead of attempting to evaluate the full posterior distri-
bution of all path available bandwidths after each measure-
ment, we choose to propagate marginal posterior distribu-
tions for the link available bandwidths (the path available
bandwidth is a deterministic function of the available band-
widths of its constituent links). We adopt this approxima-
tion because the true posterior cannot be expressed analyt-
ically and occupies a high-dimensional space. Attempting

2Recall that we assume the routing topology is known. Rather
than working with the routing topology directly, we reduce it to
the minimal equivalent logical topology by combining links that
are in series. Under our modelling assumptions, the available
bandwidth of two or more links in series is equal to the minimum
available bandwidth of the constituent links. Thus, operating on
the logical topology loses no information.
3To be exact, we bound this function to lie in the range [κ, 1−κ]
for a small constant κ to ensure that we assign some likelihood
to unexpected measurement outcomes at all ingress rates.



to track the full posterior with any accuracy thus involves a
very high computational expense.

We would like to obtain network-wide available band-
width estimates using as few probes as possible. To accom-
plish this, we adopt an active learning approach, sequentially
choosing which path to probe next based on the measure-
ments already obtained. Given that we will probe a path
p next, we choose the probing rate to be the median of the
marginal P (yp = r|z), since this is the rate of highest un-
certainty; i.e., the rate at which we are equally likely to
observe a 1 or a 0 according to our current model. Probing
at the median in this fashion is equivalent to conducting a
probabilistic binary search for the available bandwidth on
path p [1]. The other major design issue to be addressed
is how to choose which path to probe next. A näıve ap-
proach would be to probe each path in round robin fashion.
However, this would result in often probing paths for which
we already have relatively confident estimates. Instead, we
consider two data-driven, randomized approaches to path
selection. The weighted entropy approach selects the next
path to probe with probability proportional to the entropy of
its current marginal distribution. The weighted confidence
interval approach selects the next path to probe with prob-
ability proportional to the width of the bandwidth range (in
Mbps) required to encapsulate η percent of the probability
mass. Both schemes favour probing paths for which the cur-
rent available bandwidth estimate has higher uncertainty.

We specify the stopping criterion in terms of confidence
intervals — we require that η percent of the probability mass
lies in a bandwidth range smaller than β for all paths. In
the deployed software, we also specify a maximum number
of measurements per path, to address the case of high vari-
ability where convergence is difficult to achieve.

4. RESULTS
In this section we describe preliminary results of simula-

tions and experiments on the PlanetLab network4. In all
cases, we focus on the (ε, δ)-available bandwidths for ε = 5
Mbps and δ = 0.5. The purpose of the simulations is to ex-
plore the efficacy of our proposed learning strategies. These
are not network simulations, so they do not test modelling
assumptions at all (that is the purpose of the PlanetLab ex-
periments). The simulations are conducted in Matlab, on a
topology derived (using traceroute5) from PlanetLab. The
simulation topology consists of M = 20 paths and N = 32
links. The link available bandwidths are assigned using a
uniform distribution over the range [1, 100] Mbps. Probe
outcomes are generated according to our likelihood model.

Figure 1 compares the three path selection algorithms out-
lined in the previous section (Round-robin (RR), Weighted
Entropy (WE), and Weighted Confidence Interval (WCI)).
We show the number of measurements per path required
for the algorithm to terminate (averaged over 25 runs with
the same topology but different random link capacities), as
well as the accuracy (an estimate is considered accurate if
the real available bandwidth lies within the identified con-
fidence interval). For comparative purposes, we also show
the average number of measurements and accuracy required

4http://www.planet-lab.org/
5Topology estimation using traceroute can inflate the number of
routers and identify non-existing links [10], but it is sufficiently
accurate for preliminary experimentation.
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Figure 1: Simulation results: measurements re-
quired and accuracy achieved. Results are averaged
over 25 runs for different confidence levels η and in-
tervals β. The topology has 20 paths and 32 links.
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Figure 2: Accuracy of our estimates and number of
measurements per path averaged over 20 runs of 16
tests as a function of the train size used. We used
β = 10, η = 0.95, ε = 5 and WCI for path selection.

when our active learning algorithm is run independently and
sequentially on each path (SEQ). In most cases, SEQ re-
quires fewer measurements than the round-robin strategy
with the graphical model. This is due to the fact that not
all paths require the same number of measurements; in the
RR case, the algorithm iterates through all paths even the
ones that have already met the required confidence criterion,
which is not the case in SEQ. This shows that employing the
factor graph in a naive manner can be disadvantageous be-
cause noisy measurement outcomes can spread uncertainty
to other path estimates. Both data-driven approaches sig-
nificantly reduce the number of measurements required.

For our online experiments, we deployed our measurement
software on various nodes on the PlanetLab network. The
online topology consists of M = 30 paths and N = 65 links;
all possible end-to-end paths between six selected nodes. To
construct the factor graph using the method described in
Sect. 3, we first extract the topology (using traceroute). We
do so before every experiment, but noticed that the routing
table was relatively stable for a given set of nodes over the
days during which we ran the experiments. In Fig. 2, we ex-
amine the estimation performance and explore the impact
of using different train sizes. The left panel of the figure
shows the number of measurements required to achieve the
required confidence level (β=10Mbps, η = 0.95). The right
panel shows the outcome of transmission tests conducted at
the end of the estimation interval. We performed four tests
on four disjoint paths (for a total of 16 tests per run) by
sending trains of 2000 packets of 1000 bytes and observing
the output rate. The trains were sent at four different rates
— the lower bound of the confidence interval lb, the lower
bound plus 5 Mbps (approximately the midpoint of the con-
fidence interval), the upper bound of the confidence interval
ub, and 5 Mbps above the upper bound. Based on these
tests, we calculate the empirical probability that the egress
rate exceeds the ingress rate less the tolerance factor ε. The



performance varies very little with the number of packets
in the train, indicating that, for this network at least, 25
packets per train would suffice. Probing at the upper bound
of the confidence interval results in an empirical probabil-
ity close to 0.5, the target δ for our experiments. When
the upper bound is exceeded by a few Mbps, the empiri-
cal probability drops to values around 0.1 − 0.2, and prob-
ing at the lower bound leads to an empirical probability of
0.8 − 0.9. These results indicate that the estimated confi-
dence intervals provide a very good indication of the rate at
which data can be transmitted with reasonable probability
of avoiding congestion. The technique slightly underesti-
mates the available bandwidths; this is probably due to an
asymmetry we observe in the uncertainty (“noise”) of mea-
surement outcomes, depending on whether the input rate is
less than or exceeds the available bandwidth. This is not
reflected in our symmetric likelihood model.

5. DISCUSSION
The estimation approach we have outlined involves each

probe measuring a single rate (with a decision about the
rate made using an active learning strategy). An alterna-
tive measurement strategy, employed previously in available
bandwidth estimation for a single path [8], is to test at mul-
tiple rates with each probe. This is achieved by varying
the spacing between packets in the probe-train, so that the
rate (number of bytes/time) changes for the first k+1 pack-
ets compared to the first k. In one measurement we can
make multiple binary tests, constructing a value z(k) for
each value of k ∈ Kmin, . . . ,K. Here K is the total number
of packets in the probe and Kmin is the minimum number
of packets required to generate a meaningful rate test.

The chirp approach has a clear advantage of providing in-
formation about multiple rates with one measurement, but
for a fixed byte budget, the trade-off is that each binary test
is much noisier. Moreover, constructing a likelihood func-
tion for the multiple outcomes of a chirp must be approached
with care, because the “noise” is correlated. The successive
tests in the chirp are affected by the same competing traf-
fic, so the validity of the independence assumption between
measurements is much more questionable. Given this issue,
the question arises of how we can meaningfully incorporate
the richer information provided by the chirp probes.

One method is to view the outcome of the chirp probe not
as a series of binary tests, z(k) = 1{r′p(k) > rp(k)− ε}, but
as a single rate outcome z = r(k∗). In the noiseless, ideal
case, we would like to choose k∗ such that r′p(k) = rp(k) for
all k < k∗ and r′p(k) < rp(k) for all k > k∗. In the noisy
setting, we only expect these conditions to hold for most k;
we choose k∗ to maximize how often the conditions hold.

We thus have specified a measurement z and can strive to
identify an appropriate likelihood function L(z|r∗p, rp). The
likelihood is dependent on both the available bandwidth r∗p
and the probe structure, identified by the vector of probing
rates rp. We are currently conducting experiments to iden-
tify a suitable parametric model for the likelihood, which
can then be trained in a similar fashion to the likelihood
function for single-rate packet trains.

In contrast topathChirp, we propose to employ an adap-
tive measurement process, adjusting the range and spacings
of the chirp probes based on similar active learning princi-
ples to those we have used for single-rate measurements. We
anticipate that a hybrid measurement approach will prove

most effective, where chirps are used initially to quickly lo-
cate a small range of probable values for the available band-
width and then single-rate packet trains, which have less
noise, are used to provide fine-grained resolution.

6. CONCLUSION
We have introduced a method for the estimation of the

available bandwidths of multiple paths. We describe the
statistical dependences between the available bandwidths of
different paths using a probabilistic graphical model. The
estimation strategy follows a Bayesian learning framework
and involves the application of loopy belief propagation to
infer marginal posteriors. We use active learning methods
to choose the path to probe and the probing rate in order to
minimize the measurement overhead. Simulations indicate
that the active learning strategies significantly reduce the
number of probes required to form an estimate. On-line ex-
periments on the PlanetLab network show that the estimates
our methodology generates provide a very good indication
of the maximum rates at which data can be transmitted so
that there is small probability of inducing congestion.
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